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Abstract

A virtual internal bond (VIB) model for isotropic materials has been recently proposed to describe material

deformation and fracture under static and dynamic loading situations. Fracture simulation using an isotropic VIB

model, is made possible by incorporating a cohesive type law, inspired by atomistic-level interaction among particles

into a hyper-elastic framework at the continuum level. Thus, fracture is built directly into the constitutive formulation.

The numerical implementation of the model into a finite element scheme and the determination of model material

parameters was described in detail in [Eng. Fract. Mech. 71 (2004) 401].

In this paper, the isotropic model is extended for the fracture simulation of anisotropic materials. This is done by

introducing a bond density function at the atomistic level, that can model a variety of anisotropic materials. The bond

density function is modeled by spherical harmonics expansions. The derived anisotropic model is implemented as a

material model subroutine in ABAQUS and used to perform fracture simulations in anisotropic materials. Simulations

and results of comparisons with the isotropic model are presented in this paper.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The prediction and numerical simulation of fracture in a variety of materials ranging from brittle to

ductile materials, composite materials, functionally graded materials, etc. is at the fore front of research in
modern times. With the availability of advanced computational technologies the numerical simulation of

fracture to predict crack initiation, growth and propagation has made significant advances. There are three

primary approaches to the problem of fracture simulation.

The first approach is based on a molecular dynamics (MD) method, where the inter-atomic potentials

are used to simulate millions of atoms with appropriate boundary conditions. At times the MD method is
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coupled with the finite element method to make the problem tractable. The MD method depends critically

on an appropriate choice of the inter-atomic potential and the availability of supercomputing facilities. For

example, Abraham et al. (1994) have used MD method to study the instability dynamics of fracture of

brittle materials and Broughton et al. (1998) have investigated the numerical simulation of fracture of
silicon using a coupled molecular dynamics and finite element approach.

The second approach is based on using cohesive surfaces in a finite element scheme. Barenblatt (1959),

Dugdale (1960), Willis (1967) and others have addressed issues pertaining to this approach. Needleman

(1987) provided a framework for the separation process starting from initial debonding in the cohesive

zone. Larsson (1995) used this approach to simulate fracture in brittle materials while Xia and Shih (1995)

simulated fracture in ductile materials under static loading. Xu and Needleman (1994) introduced special

boundary elements, between regular elements, which obey a cohesive stress-separation law. The factors that

influence the cohesive law behavior are the cohesive strength and the fracture energy in the separation
process. These models obviate the need for a separate fracture criterion, but can allow cracks to form only

along the element boundaries. Gullerud and Dodds (1999) and Foulk et al. (2000) have more recently used

the 3-D cohesive elements in between regular finite elements in the fracture zone, known a priori, to model

crack behavior in ductile materials and composites, respectively.

The third approach, which is also based on a finite element method, has two important features that

differentiate it from the other two approaches. Firstly, it is a multi-scale approach that bridges the atomistic

and continuum scales and secondly it incorporates fracture criterion directly into the constitutive formu-

lation of the material. The first feature allows it to incorporate features of the atomistic level interactions,
such as inter-particle potentials, while the second feature implies that no crack zones and paths need to be

specified a priori, consequently no boundary elements are needed. This approach was first proposed by Gao

(1996, 1997) for materials undergoing brittle fracture, based on his theory that a hyper-elastic description,

in the Lagrangian framework, of the crack tip behavior provides a better explanation of crack tip insta-

bilities. Gao and Klein (1998) later developed a method called the virtual internal bond (VIB) model, in

which a cohesive type law is directly incorporated into the constitutive model by treating the body as a

collection of randomly oriented material points interconnected by a network of cohesive bonds. The

Cauchy–Born rule of crystal elasticity is used to derive the overall constitutive relations by equating the
strain energy of the bonds to the potential energy stored in the continuum due to applied loads and

deformations. The bridging of scales between the continuum and atomistic levels is done by relating the

bond length between the atoms to the continuum based Green–Lagrange strain tensor. The 2nd Piola-

Kirchoff stress tensor can then be computed from the potential energy expression.

The VIB model may be implemented into the finite element methods based on two integration schemes,

namely the implicit and the explicit schemes. Klein and Gao (1998) used an implicit second-order time

stepping algorithm to successfully simulate quasi-static and dynamic loading problems. Zhang et al. (2002)

used the implicit integration scheme and implemented the VIB model in ABAQUS (ABAQUS, 2000) using
the UMAT subroutine.

The softening region of the constitutive model presents certain problems when using the implicit inte-

gration schemes with elliptic equations, which arise as the formulation correlates the onset of fracture to the

presence of strain localization caused by the loss of ellipticity of the governing equations. The loss of

ellipticity could result in singular tangent matrices and the associated presence of negative eigen-values.

Thus, a successful implementation of the implicit integration scheme could require preconditions, such as

the incorporation of stiff elements adjoining the VIB layer elements or specification of a narrow band of

VIB layer, which is akin to prespecifying the crack path.
To avoid the numerical issues posed by the implicit integration scheme, the VIB model was implemented

for dynamic problems in an explicit integration scheme by Thiagarajan et al. (2004). The model was suc-

cessfully implemented in ABAQUS using the VUMAT subroutine to study the effect of mesh size and

loading rates on crack initiation, propagation and branching. The experimental verification and validation
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of the VIB model has been studied for the dynamic fracture and fragmentation of brittle materials under

impact loading in Thiagarajan et al. (2002, 2004). Good agreement was shown between the predicted and

experimentally determined values.

The motivation for the current study stems from the necessity to propose a similar methodology for
predicting the crack initiation, propagation and branching for anisotropic materials. Anisotropy is intro-

duced as a directional distribution of the bond density function, recognizing that the bond densities are

different in different directions. In this paper, the bond density function is modeled by using spherical

harmonic expansions. In the subsequent discussions we present the theoretical details of the anisotropic

VIB model to simulate fracture in anisotropic materials. The numerical implementation and results for an

anisotropic plate with a hole problem are then presented. These results are compared with those for iso-

tropic materials to highlight the effect of anisotropy on fracture propagation.
2. Anisotropic VIB model: theoretical formulation

The basic premise of the VIB model as proposed by Gao (1996, 1997) and Gao and Klein (1998), is that

the elastic behavior of a spatial distribution of material points at the continuum level is related to the

underlying atomistic-level cohesive bonds through the Cauchy–Born rule of crystal elasticity. The inter-

action at the atomistic level may be described through interaction potentials.

2.1. VIB model framework

The VIB model is described within the framework of hyper-elastic continuum mechanics. The initial and

the deformed configurations are defined using the Lagrangian coordinates X ¼ XI and the Eulerian

coordinates x ¼ xðX; tÞ ¼ xiðXI ; tÞ, respectively. In this paper, capital letter subscripts are used for the initial

configuration while lower case subscripts are used for the deformed configuration. The deformation gra-

dient can be expressed as follows
F ¼ ox

oX
or FiI ¼

oxi
oXI

ð1Þ
The Green–Lagrange strain tensor may then be defined as
E ¼ 1

2
ðFT � F� IÞ ð2Þ
where I is the second-order identity tensor.

Consider an arbitrary micro-structural bond at an angle h and /, where h is the angle of the bond

orientation with respect to the vertical positive 2-axis, and / is the angle in the horizontal plane with respect

to the positive 1-axis, respectively. The unit vector along this direction is given as n ¼
ðsin h cos/; sin h sin/; cos hÞ with respect to the undeformed configuration. The stretch of this bond can be

given as
l ¼ l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nIEIJnJ

p
ð3Þ
The macroscopic strain energy density function is derived using the Cauchy–Born rule (Milstein, 1980;

Tadmor et al., 1996) as
wðEIJ Þ ¼ hUðlÞi ð4Þ

where h� � �i represents the weighted average with respect to the bond density function Dd and UðlÞ is the
bond potential energy function. Assuming that all bonds have the same initial length l0, for the general case
the weighted average is given as,
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h� � �i ¼
Z 2p

0

Z p

0

. . .Ddðh;/Þ sin hdhd/ ð5Þ
The term Ddðh;/Þ sinðhÞdhd/ represents the number of bonds per unit volume between the bond angles (h,
hþ dh) and (/,/þ d/).
2.2. Bond density functions

The anisotropy in the VIB fracture model is introduced in Eq. (5) through the inclusion of density

functions that characterizes the directional dependence of the bond density. The bond density requires a

density function in spherical polar coordinates that can describe the concentrations of bond orientation.

Spherical harmonics expansions may be used to represent such bond orientation densities (Chang and

Misra, 1990; Misra, 1999).
The bond density function, Ddðh;/Þ, may be expressed as a spherical harmonics expansion as follows
Ddðh;/Þ ¼
1

4p
1

0
@ þ

X10

k¼2

ak0Pkðcos hÞ
"

þ
Xk

m¼1

Pm
k ðcos hÞðakm cosðm/Þ þ bkm sinðm/ÞÞ

#1A ð6Þ
where h and / are as defined earlier. Furthermore,
P0

represents the summation with respect to even
indices only; Pkðcos hÞ is the kth Legendre polynomial; Pm

k ðcos hÞ is the associated Legendre function; and

ak0, akm, and bkm are coefficients of spherical harmonics expansions. In order to ensure that the density

function is centrosymmetric, and symmetric about the z ¼ 0 plane (i.e. Ddðh;/Þ ¼ Ddðp� h;/þ pÞ and

Ddðh;/Þ ¼ Ddðp� h;/Þ), only the even harmonics are admissible. The first term in Eq. (6) represents a

sphere and the subsequent terms can be regarded as a function defined on the surface of the sphere. Since

the Legendre polynomials and the associated Legendre functions are orthogonal to 1, it follows that Eq. (6)

is a density function such that
Z
X
Ddðh;/ÞdX ¼ 1 ð7Þ
For simplicity of the subsequent formulation, a truncated form of the expansion of Eq. (6), consisting of

second-order terms, is used. The Legendre polynomial of degree two, i.e. P2ðcos hÞ is given by Abramowitz

and Stegun (1965)
P2ðcos hÞ ¼
1

2
ð3 cos2 h� 1Þ ð8Þ
The associated Legendre function P 2
2 ðcos hÞ can be obtained from the Rodrigues formula (Abramowitz and

Stegun, 1965) as follows
Pm
k ðxÞ ¼

ð1� x2Þ
m
2

2kk
dkþm

dxkþm
ðx2 � 1Þk ð9Þ
For k ¼ 2 and M ¼ 2 Eq. (9) yields
P 2
2 ðcos hÞ ¼ 3 sin2 h ð10Þ
Thus, the truncated spherical harmonics expansion consisting of second-order terms is finally given as
Ddðh;/Þ ¼
1

4p
1

�
þ 1

4
a20ð3 cos 2hþ 1Þ þ 3 sin2 hða22 cos 2/þ b22 sin 2/Þ

�
ð11Þ
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2.3. Material symmetries

By choosing appropriate values of coefficients a20; a22 and b22 different types of material symmetries can

be simulated. The case for isotropic and transversely isotropic materials is described here.
Isotropic material: For example, a20 ¼ a22 ¼ b22 ¼ 0 represents an isotropic material, as the bond density

function becomes a constant. In this case the macroscopic strain energy function is given as
wðEIJ Þ ¼ Dd

Z 2p

0

Z p

0

UðlÞ sin hdhd/ ð12Þ
where Dd ¼ 1
4p from Eq. (11), which is identical to the isotropic VIB model as proposed by Gao (1996, 1997)

and Gao and Klein (1998).

Transversely isotropic material: For transversely isotropic materials, the coefficients a22 ¼ b22 ¼ 0 and a20
is the only non-zero coefficient. Furthermore, for transversely isotropic materials, the density function must

be positive semi definite, that is Dd P 0, for all values of h and /. Therefore
1þ a20
4

ð3 cos 2hþ 1ÞP 0 ð13Þ
which results in the coefficient a20 being bounded as follows
�16 a20 6 2 ð14Þ

The coefficient a20 represents the shape of the density distributions; a20 ¼ �1 represents the case where the

bonds are concentrated in the 1- and 3-directions and gradually decrease to none in the 2-direction. On the

other extreme, a20 ¼ 2 represents the case where the bonds concentrate along the 2-direction. Fig. 1 gives a

pictorial representation of the bond density functions for four different values of a20.

2.4. Constitutive equations and cohesive force law

From the strain energy density function w given in Eq. (4), the symmetric 2nd Piola-Kirchoff stress SIJ
and the elastic modulus CIJKL can be derived as follows
S ¼ ow
oE

or SIJ ¼
ow
oEIJ

ð15Þ

CIJKL ¼
o2w

oEIJoEKL
ð16Þ
The modulus derived from this potential satisfies the major and minor symmetries, CIJKL ¼ CJIKL ¼
CIJLK ¼ CKLIJ , as well as the Cauchy symmetry, CIJKL ¼ CIKJL. For isotropic material this results in only
one elastic constant being needed. This is due to the fact that the Cauchy symmetry is satisfied by the

fourth-order isotropic elasticity tensor only for the case of k ¼ l, where k and l are the two Lame�s
constants.

While it is very difficult to derive a closed form solution for the elastic stiffness tensor for a general

case, Gao and Klein (1998) have derived analytical forms of the elastic stiffness tensor for a few sim-

ple cases. These cases serve as a guideline to correlate isotropic material properties to the model param-

eters. For the plane stress isotropic solid it was shown by Gao and Klein (1998) that the shear modulus is

given by
l ¼ pD0l20U
00ðl0Þ

4
ð17Þ



Fig. 1. Bond density function representations for a20 ¼ 2:0, 1.0, 0.0 and )1.0.

2924 G. Thiagarajan, A. Misra / International Journal of Solids and Structures 41 (2004) 2919–2938
In this paper we utilize the classical two parameter cohesive force law expressed as
U 0ðlÞ ¼ Aaðl� l0Þe�
l�l0
Bb ð18Þ
and is represented in Fig. 2. U 0ðlÞ is the cohesive force and is the derivative of the bond potential energy

with respect to the bond length �l�. Under the case of equibiaxial stretching, the constant Aa can be related to

the initial shear modulus by Eq. (17) and represents the initial slope of the curve in Fig. 2. The parameter
l�l0
Bb

is related to the strain at which the cohesive stress is reached and is determined by matching the

experimental results with numerical simulations and is described in detail in Thiagarajan et al. (2004). A

brief description is given in this paper in the section on the determination of parameters.

2.5. Elastic properties for tranversely isotropic material

The analytical expressions for the elastic properties using the anisotropic VIB model can be derived for a

few simple cases as shown below. For transversely isotropic materials the coefficients reduce to

a22 ¼ b22 ¼ 0; a20 6¼ 0.

Infinitesimal strain case: For the infinitesimal strain case the Green–Lagrange strain and the 2nd P.K.

Stress tensor reduce to the stress and strain tensors of linear elasticity. For this case the potential function
can be expanded up to the second term as shown below
w ¼ Uðl0Þ
�

þ l20
2
U 00ðl0Þðni�ijnjÞðnk�klnlÞ

�
ð19Þ
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Fig. 2. Representation of 2-parameter cohesive law.
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From Eq. (19) the fourth-order elasticity tensor can be derived using Eq. (16) and expressed as follows
Cijkl ¼ hU 00ðl0Þðni�ijnjÞðnk�klnlÞi ð20Þ

¼
Z 2p

0

Z p

0

l20U
00ðl0ÞDdðh;/ÞðninjnknlÞ sin hdhd/ ð21Þ
where Ddðh;/Þ is given by Eq. (11). Using the expression for the cohesive force, as shown in Eq. (18), the
non-zero components of the initial material tangent moduli can be expressed as shown here. Defining Kn as
Kn ¼ �Ae �l�l0
B

� �
ð�Bþ l� l0Þ
B

ð22Þ

the moduli can be expressed as follows
C2222 ¼ Knl20D
5

1þ 4a20
7

� 	

C2211 ¼ Knl20D
5

1

3
þ a20

35

� 	

C1111 ¼ �Knl20D
5

1þ 2a20
7

� 	

C1133 ¼ �Knl20D
5

1

3
þ 2a20

3

� 	

C3333 ¼ �Knl20D
5

1þ 2a20
7

� 	

C2121 ¼ Knl20D
5

1

3
þ a20

35

� 	

C2323 ¼ Knl20D
5

1

3
þ a20

35

� 	

C1313 ¼ Knl20D
5

1

3
þ 2a20

35

� 	

ð23Þ
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It can be shown that C2233 ¼ C1122 ¼ C3322 ¼ C2211 and C3311 ¼ C1133. In addition, the symmetries due to the

transversely isotropic material C2323 ¼ C2233 and C1133 ¼ C1313 may be observed in the above equations. The

five elastic constants for a transversely isotropic material are of the form shown below.
EL ¼ ð880a320 þ 273a220 � 6468a20 � 6860Þ
105ð73a220 � 392� 112a20Þ

Kn

ET ¼ ð80a220 � 77a20 � 490Þ
105ð13a20 þ 28Þ Kn

mLT ¼ 7ð5a20 þ a220 � 14Þ
ð73a220 � 112a20 � 392Þ

mTT ¼ ða20 þ 7Þ
ð13a20 þ 28Þ

GT ¼ a20
105

þ 1

15

� 	
Kn

GLT ¼ a20
105

þ 1

15

� 	
Kn

ð24Þ
Figs. 3 and 4 show the variation of the longitudinal EL and the transverse ET elastic moduli, for a trans-

versely isotropic material with the strain l�l0
B for different a20 values. Two observations can be made from

these figures. Firstly, the modulus EL decreases and ET increases as a20 decreases. Secondly, the moduli in

both cases decreases to zero with increasing strain of l�l0
B up to 1.0 and then become negative which rep-

resents the softening phase.

Fig. 5 shows the variation of two Poisson�s ratios mLT and mTT, in the longitudinal–transverse and

transverse–transverse directions with the parameter a20. It can be observed that for the isotropic case

a20 ¼ 0 the ratios are 0.25 which corresponds to the isotropic VIB case.
0 1 2 3 4                      5

(l–l_o)/B

–100

–50

0

50

100

150

200

E
_L

  L
on

gi
tu

di
na

l M
od

ul
us

 (
G

P
a)

a_20 = 2.0
a_20 = 1.0
a_20 = 0.0
a_20 = 1.0

Fig. 3. Variation of EL with l�l0
B for different a20.



0 1 2 3 4                      5
(l–l_o)/B

–50

0

50

100

E
_T

 –
 T

ra
ns

ve
rs

e 
M

od
ul

us
 (

G
P

a)

a_20 = 2.0
a_20 = 1.0
a_20 = 0.0
a_20 = –1.0

Fig. 4. Variation of ET with l�l0
B for different a20.

–1 0                                      1                                       2
a_20

0

0.2

0.4

0.6

0.8

P
oi

ss
on

’s
 R

at
io

Longitudinal – Transverse
Transverse – Transverse

Fig. 5. Variation mLT and mTT for different a20.

G. Thiagarajan, A. Misra / International Journal of Solids and Structures 41 (2004) 2919–2938 2927
Equitriaxial stretching case: The Green–Lagrange strain tensor components for the case of equitriaxial

stretching case can be expressed as EIJ ¼ �dIJ . The deformation gradient reduces to a diagonal form as

follows
F11 ¼ F22 ¼ F33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
ð25Þ
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Using the deformation gradient shown in Eq. (25) the bond length is given as
l ¼ l0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
ð26Þ
Substituting the bond length in the cohesive force equation gives,
U 0ðl0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
Þ ¼ �Aðl0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
� l0Þe �l0

ffiffiffiffiffiffi
1þ2�

p
�l0

B

� �
l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p ð27Þ
The expressions for the non-zero 2nd Piola-Kirchoff stresses can now be expressed using Eq. (15) as follows:
S22 ¼
1

15

Ae
l0
B

� �
ð�5þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
a20 � 2a20 þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
Þ

e
l0
ffiffiffiffiffiffi
1þ2�

p

B

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p ð28Þ

S11 ¼
1

15

Ae
l0
B

� �
ð5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p
a20 � 5þ a20Þ

e
l0
ffiffiffiffiffiffi
1þ2�

p

B

� � ffiffiffiffiffiffiffi
1þ2�

p ð29Þ

S33 ¼ S11 ð30Þ

It has seen that the stresses in the two transverse directions are equal. It can be shown from a graphical
representation that the cohesive S22 stress decreases and the cohesive S11 stress increases, as the parameter

a20 is decreased from 2 to )1.
3. Results and discussions

For general loading conditions the anisotropic VIB model, given by Eqs. (15) and (16), is numerically

evaluated to study the dependency of the stress–strain behavior on the anisotropy coefficient a20. The model
is also implemented into the finite element program ABAQUS, as a material VUMAT subroutine to

investigate crack initiation and propagation. In the subsequent discussions, the cohesive force law

parameters are first determined, the effect of anisotropy on the stress strain curve then presented and finally

the finite element results of the plate with a hole problem is described.

3.1. Determination of cohesive force law parameters

The material used for realistic simulations in this study, is chosen as one with an elastic modulus in the

principal axis of anisotropy (2-direction), E22 ¼ 370 GPa and a mass density of q ¼ 3960 kg/m3. This choice

is made to allow for comparisons of crack patterns with the isotropic VIB simulations given in Thiagarajan

et al. (2004). The parameter Aa in Eq. (18) which represents the initial slope of the cohesive stress separation

curve, can be computed using the following equation
Aa ¼
4

p
1

D0l20
l ð31Þ
where l is the shear modulus of an isotropic material. The parameter l�l0
Bb

in Eq. (18) represents the strain at

which the cohesive stress is reached. It has been found in Thiagarajan et al. (2004), using experimental

verifications and validation, that the parameter l�l0
Bb

is representative of the strain at which brittle materials

fracture. For the material chosen in the simulations presented in this paper a value of 0.0025 is chosen for

the parameter Bb, which is similar to that used by Thiagarajan et al. for the case of isotropic alumina
(Thiagarajan et al., 2004). Furthermore, D0 and l0 is taken as unity.
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3.2. Validation of model parameters

Andrews and Kim (1988) have studied some of the issues relating to dynamic fracture and fragmentation

in brittle materials under impact loading. They conducted tests on small spherical balls made of alumina
impacting a rigid anvil. Four different particle diameters (0.795, 1.59, 3.18 and 6.35 mm) were tested to

investigate the effect of particle size on the fragmentation process.

One set of data (0.795 mm ball diameter) was used to calibrate the VIB model parameters (Aa and Bb).

The value of Aa is computed as outlined in Eq. (31). For the impact simulations the parameter Bb (which

represents the strain at which the cohesive stress is reached) was determined by matching the threshold

velocity of 50 m/s reported (Andrews and Kim, 1988, Fig. 4a). A finite element mesh with three noded plane

stress triangular elements was used for the alumina disk. The anvil was modeled using rigid link elements.

The disk had 276 nodes and 500 elements. A velocity initial condition was specified for the disk and
simulations were run with different values of the parameter Bb.

It was found from the simulations (Thiagarajan et al., 2004) that a value of Bb in the range of 0.0015–

0.0025 resulted in the threshold velocity of 50 m/s. Values of Bb greater than 0.0025 did not result in fracture

at 50 m/s. As Bb was lowered the first value that predicted the fracture was chosen. A value of Bb ¼ 0:0015
shows multiple cracks immediately after the bounce while the simulation with a Bb ¼ 0:0025, showed one

central crack just appearing. Hence a value of Bb ¼ 0:0025 was chosen for subsequent validations of the

model. It is interesting to note that this range of Bb represents the range of strains at which brittle materials

such as alumina fracture (as the VIB model originally assumed).
Numerical verification: To verify the validity of the VIB model the simulations were run for the other two

diameters (1.59 and 6.35 mm). Numerical simulations were also done for a 4mm diameter disk. The values

of Aa and Bb determined for the 0.795 mm diameter ball were used in these simulations. The disks were

impacted at different velocities. The primary purpose was to determine the threshold velocity for each disk,

called the critical impact velocity. It was shown in Thiagarajan et al. (2004) that the model predictions agree

well with the experimental results (Andrews and Kim, 1988).

3.3. Effect of anisotropy on the stress–strain curves

A displacement controlled single element uniaxial strain simulation, along the major axis (y-axis), was
performed using the proposed anisotropic VIB model to study the stress–strain curves predicted for

transversely isotropic materials using four different values of the coefficient a20. These four different values
of the coefficient a20 ¼ �1, 0, 1, and 2 represent different bond density functions as shown in Fig. 1. The

corresponding stress–strain responses for the four cases are shown in Fig. 6. It is observed that as a20 in-

creases, the cohesive stress increases significantly which is the result of an increase in the bond density in the

y-direction. In all these simulations the strain at which the cohesive stress is reached is kept the same, by
retaining the same value of Bb.

The nature of stresses in the transverse (x- and z)-directions were also studied for the case of a uniaxial

strain in the longitudinal (y)-direction. The evolution of the transverse stress due to the loading in the

longitudinal direction is shown in Fig. 7 from which the following important observations may be made.

1. Firstly, it can be seen that the stress in the longitudinal direction reaches its cohesive limit earlier than the

transverse direction stresses. From Fig. 7 it is also observed that the transverse stress continues to in-

crease even when the longitudinal stress is in the softening region. Thus the transverse stress reaches
the maximum (or ‘‘cohesive limit’’) at a higher strain, which depends upon the anisotropy parameter a20.

2. Secondly, as the coefficient a20 decreases, the transverse direction softens at a faster rate. Thus the faster

softening rate is observed, as seen in Fig. 7, by the rate at which the stress ratio curve goes back to zero

once the stresses in both the directions have reached their respective cohesive limits.
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Therefore, the effect of anisotropy parameter a20 on the strain at the cohesive stress limit is studied using

Figs. 8 and 9, which show the variation of the average and the deviatoric stress with the longitudinal

Green–Lagrange strain, respectively. As seen in Fig. 8, the maximum average stress, defined as (r1þr2
2

),

occurs at different strains depending upon the initial anisotropy. In addition, the post peak softening re-

sponse in terms of the average stress also depends upon the initial anisotropy. The material with higher

stiffness in the longitudinal direction has a steeper softening regime as opposed to the material with a higher

stiffness in the transverse direction. Fig. 9, which is a plot of the deviatoric stress, defined as (r1�r2
2

), versus

the longitudinal strain shows that the post peak deviatoric stresses diminish to zero at smaller strains for
material with higher stiffness in the longitudinal direction. Clearly the indication is that the material does



0 0.1 0.2 0.3 0.4 0.5

Green Lagrange Strain E_22

0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 S
tr

es
s 

( 
x 

0.
01

 M
Pa

) 

a_20 = 2
a_20 = 1
a_20 = 0
a_20 = -1

Fig. 8. Average stress–longitudinal strain for single element simulation.

0 0.1 0.2 0.3 0.4 0.5

Green Lagrange Strain E_22

-2000

-1000

0

1000

2000

3000

4000

Pr
in

ci
pa

l D
ev

ia
to

ri
c 

St
re

ss
 (

 x
 0

.0
1 

M
Pa

) 

a_20 = 2
a_20 = 1
a_20 = 0
a_20=-1

Fig. 9. Deviatoric stress–longitudinal strain for single element simulation.

G. Thiagarajan, A. Misra / International Journal of Solids and Structures 41 (2004) 2919–2938 2931
not fail in the transverse direction (direction perpendicular to the loading). To obtain the orientation of

failure plane a bifurcation analysis would be needed which would be pursued in a separate publication.

Fracture energy due to change in a20: The fracture energy for different values of the parameter a20, has
been computed here as the energy based on stress–strain curves in Fig. 6. Fig. 10 shows the variation of the

fracture energy for different a20 values. It is observed that the fracture energy increases linearly with an

increase in a20 from )1 to 2.

3.4. Plate with a hole simulation results

The anisotropic VIB model described in the previous section, has been incorporated into a user material
model subroutine in ABAQUS. The implementation is done using the VUMAT subroutine of ABAQUS,
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the explicit integration scheme and the Cauchy stress components. As the stresses and strains are defined in

the corotational system, the stress and other state variables can be computed directly and updated in the

subroutine. ABAQUS provides, among other quantities, the strain increments and the deformation gra-

dient at the current time increment.

The resulting model has been used to study a plate with a hole subjected to displacement loading in the

vertical direction, as shown in Fig. 11. The mesh contains 4712 nodes and 2250 eight noded brick elements

with a reduced integration scheme. There are two layers of elements in the thickness direction. Plane stress
elements were not used in order to utilize the three dimensional feature of the anisotropic VIB model. Only

an eighth of the plate is simulated due to symmetry conditions. The displacement is gradually increased

from 0% to 20% of the vertical dimension in 1 s.

The fracture initiation and patterns are generated by the finite element simulations for four different

cases of the coefficient a20. The stress–strain results from the first element on the lowest row and located

adjacent to the hole (bottom corner) are compared with those of the uniaxial strain simulation results, in

Fig. 12, for the case of the coefficient a20 ¼ 0 and 2 . The stress–strain behaviors are obtained from the

uniaxial strain and finite element simulations compare very well. The difference in the peak cohesive stress
values indicate that the loading condition in the finite element simulation is not purely uniaxial strain.

Normalization factor for time: The normalization factor for time to be used in anisotropic problems, such

as the one described in this paper, may be defined as the time required for the stress wave to travel the

length of the plate, and is given as
dt ¼ L
cd

ð32Þ
where cd is the wave speed and L is the length of the plate. The wave speed cd may be expressed as
cd ¼
ffiffiffiffiffiffi
EL

q

s
ð33Þ



Fig. 11. Mesh used in plate with hole simulations.
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where EL is the longitudinal modulus given by Eq. (24). Since EL is dependent on the anisotropy parameter

a20 the wave speeds vary with a20. Hence, it is not possible to have the same normalization number for all

the simulations. The normalization factor used for results shown in Fig. 13 is the dt value that corresponds
to the parameter a20 ¼ 0––the isotropic case. However, in Fig. 15 where the onset of crack appearance for

different values of a20 is compared, two different factors are used. One of them is the constant scaling factor

with a20 ¼ 0 and the other represents the variable scaling factor wherein dt is computed directly from Eq.
(32) which varies for different values of a20.
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The results from the left bottom corner element, adjacent to the hole, has been studied for the variation

of stresses with time. Fig. 13 shows the variation of the longitudinal stress with time for the four different

values of the coefficient a20. The vertical axis in Fig. 13 represents the stress value while the horizontal axis

represents the normalized time value. As explained earlier in this section, the normalization time factor used
here corresponds to the wave speed of the isotropic material a20 ¼ 0. Fig. 14 shows the variation of the

longitudinal stress along the path defined by the bottom edge of the plate. In Fig. 15, which shows the

normalized time value at which the stress in this element reaches its cohesive limit, two different normal-

ization factors are used. The constant scaling factor corresponds to the isotropic material whereas the

variable scaling factor, which is truly representative of the actual time required for the wave to travel one

length of the plate, depends on the value a20. The following observations can be made from Figs. 13–15.

1. The time for the element to be stressed increases as a20 decreases as seen in Fig. 13. The increase is due to
the fact that the time required for the stress wave to propagate is related to the elastic modulus of the

material in the longitudinal direction. As the elastic modulus decreases with a20, the time required for

the element to be stressed increases.

2. From Fig. 13 it is noted that the peak or cohesive stress limit drops as the coefficient a20 decreases.

3. From Fig. 14 it is observed that the stress concentration depends on the coefficient a20. The concentra-

tion decreases with the coefficient a20. These stresses are plotted at their respective crack initiation times.

As expected the stress in the vertical direction also decreases with a20.
4. The time––using the constant scaling factor curve as shown in Fig. 15––at which the cohesive stress limit

is reached increases as the coefficient a20 decreases. This point is further illustrated using the deformed

mesh for the different cases, which are shown in Figs. 16 (a20 ¼ 2:0), 17 (a20 ¼ 0:0) and 18 (a20 ¼ -1:0).
All the deformations shown are at identical times. The material with a20 ¼ 2 is most heavily cracked

while that with a20 ¼ �1 has not yet cracked at this time.

5. The difficulties associated with an appropriate choice of the time scaling parameter is clearly illustrated

in Fig. 15, which shows the crack initiation times using constant and variable scaling factors. The con-

stant scaling curve gives an intuitively correct representation, that the time for crack initiation should

increase with a decrease in the longitudinal modulus. However, the variable scaling curve appears to give
the opposite result. For the variable scaling case, although the scaled value decreases, the scaling factor
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increases with a decrease in a20, and the product of the two quantities, which gives the actual time for the

crack, shows an increase.

Another important issue in dynamic fracture mechanics is the prediction of the crack tip velocity. For

quasi brittle materials the theory predicts that the limiting fracture speed is the Rayleigh wave speed.

However, the experimentally determined values are much lower (of the order or 0.3–0.33 of the Rayleigh

wave speed). The VIB model, in principle, has been shown to provide an explanation to this phenomenon

by Gao (1996) by developing a concept of local limiting speed for dynamic crack propagation. The

numerical implementation of the VIB model could be potentially used to numerically determine the crack

tip speeds in order to explain this principle.



Fig. 16. Fracture pattern of anisotropic plate with a20 ¼ 2:0.

Fig. 17. Fracture pattern of isotropic plate a20 ¼ 0:0.
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4. Conclusions

In this paper, an extension of the VIB model is presented for the finite element simulation of crack

initiation and propagation for anisotropic materials. The anisotropy of the material is modeled using bond

density functions, represented by spherical harmonics and is built in a multi-scale framework wherein the

energy due to atomistic bonds are related to the continuum energy. The extended model is used to derive

closed form expressions for (1) the anisotropic material moduli under small strain condition and (2) stress–



Fig. 18. Fracture pattern of anisotropic plate with a20 ¼ �1:0.

G. Thiagarajan, A. Misra / International Journal of Solids and Structures 41 (2004) 2919–2938 2937
strain behavior under equitriaxial stretching. From the results presented in this paper the following con-

clusions are drawn.

1. The cohesive stress limit depends on the nature of anisotropy. As the number of bonds increase in a par-

ticular direction, the cohesive stress limit also increases. This has been shown here both from single ele-

ment and finite element simulations.

2. As the bond density increases in a particular direction the elastic modulus also increases, resulting in an
increase in the wave speed. Consequently, the time for crack initiation depends upon the nature of initial

anisotropy. Under longitudinal loading, the crack initiates earlier for material with higher stiffness in the

longitudinal direction.

3. The postpeak response is also a function of the initial anisotropy. Fracture simulation results show that

under longitudinal loading a material with higher stiffness in the longitudinal direction has a steeper soft-

ening regime.

4. Based upon single element calculations of transverse stress behavior under uniaxial longitudinal strain

we note that the failure orientation is likely to depend on the initial anisotropy.
5. The finite element implementation in an explicit integration scheme with ABAQUS/Explicit is very

robust, in that the softening region in modeled numerically to its completion without instabilities. Con-

sequently very large deformations may occur facilitating the modeling of crack initiation and propaga-

tion.

6. The model builds in the fracture criterion into the constitutive model, thereby eliminating the necessity of

any external fracture criterion or any cohesive spring elements in between element boundaries.
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